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Abstract. The potential energy surface of the tetratomic molecule HCCF is determined by the U(4) alge-
braic method. The combination coefficients in the Hamiltonian are gotten from fitting the spectroscopic
data. The molecular properties, such as, force constants and dissociation energies, are obtained in terms
of the potential energy surface. A saddle point is also derived.

PACS. 02.20.Sv Lie algebras of Lie groups — 34.20.Cf Interatomic potentials and forces

1 Introduction

Molecular potential energy surfaces provide a foundation
for understanding molecular phenomena. In recent years,
various methods for studying potential energy surfaces
of triatomic molecules have been developed [1-3]. Spec-
troscopy is the most accurate source of information on the
potential energy surface, and it is now possible to obtain
the reliable potential energy surface for small molecules
from the observed spectra.

Information about potential energy surfaces has im-
proved enormously in recent years, both from the analysis
of experimental data and from ab initio calculations, but it
is still a major task to gather this information into a func-
tional representation which can be used for calculation.

The success of the interacting boson model of Arima
and Tachello [4] has new interest in the study of many-body
systems governed by algebraic Hamiltonians. In particular
the properties of Hamiltonians with U(4) as the dynamical
symmetry group have been investigated by several groups.
It has been shown that algebraic technique are a powerful
tool for the description of both time independent and time
dependent phenomena [2,5-8].

Recently, the algebraic approach has been shown to
be capable of providing an accurate description of the
highly excited state spectra of triatomic molecules us-
ing a Hamiltonian containing a small number of param-
eters [2,9,10]. But the algebraic approach has no simple
geometric interpretation, that is, it does not easily permit
the resolution of the Hamiltonian into its kinetic and po-
tential energy contributions. From the semiclassical limit
of algebraic Hamiltonians, the explicit potential energy
surface can be obtained.

# e-mail: shlaudin@sdu.edu.cn

Levine and coworkers have treated the potential en-
ergy surface of triatomic molecules using a U(2) alge-
braic model [11,12]. But the U(2) algebraic model is a
one-dimensional model, and information about the bend-
ing motion can’t be obtained using it. Recently, Zheng
and Ding [2,3,13] have obtained the realistic potential en-
ergy surface of bent triatomic molecules and linear tri-
atomic molecules using U(4) model, and they got good re-
sults. We have obtained the spectroscopy of the tetratomic
molecules with the dynamical lie algebraic method [14].
In the present paper, we show how to obtain realistic po-
tential energy surfaces of the tetratomic molecule HCCF
using the U(4) algebraic model.

The organization of the work is as follows. In the
second section we review algebraic Hamiltonian of the
tetratomic molecule HCCF, and the expansion coefficients
are given by fitting the spectroscopic data. Also we give
the calculated vibrational energies and compare them with
the experimental data. The third section gives the semi-
classical Hamiltonian, while the potential energy surface is
derived. Some molecular properties, such as the dissocia-
tion energies, force constants and saddle points, are found
in section four. The final section give some discussions of
the potential energy surface.

2 The Hamiltonian in creation
and annihilation operators

In the tetratomic molecule HCCF, there are three in-
dependent vector coordinates, ri, ro and rs (we label
the bonds as in Fig. 1), which can be thought of as
three bonds. The general algebraic theory tells us that
a quantization of these coordinates (and associated mo-
menta) leads to the groups G; = Uj(4), Go = Ux(4)
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Fig. 1. The expression
of the HCCF molecule.

and Gg = Us(4), respectively. Then dynamical symmetric
group of HCCF is [15]:

G=Ui(4) ®Us(4) ® U3(4). (1)

Its corresponding subgroup chain is [14]
U1(4) ® Uz(4) ® U3(4) D 01(4) ® O2(4) ® O3(4)

D 012(4) X 03(4) D) 0123(4) D 0123(3) D) 0123(2).
o . . . (2)
The algebraic basis for this coupling scheme is character-
ized by the quantum numbers:

[[N1], [N2][N3]p1p2(p12, q12)ps(p, @) T M) . (3)

Here [V;] denotes the totally symmetric representation of
U;(4) (i = 1,2,3), (pi,0) denotes the symmetrical rep-
resentation of O;(4) (i = 1,2,3), and (p12,¢q12) denotes
the irreducible representation of O12(4). Here N1, Na, N3
are fixed and the remaining quantum numbers p1, p2, ps,
P12, q12, P, q, J, M are precisely used to characterize the
states of tetratomic molecule HCCF and its degeneracy.
The relations between the group quantum numbers and
the conventional quantum numbers of linear tetratomic

l l .
molecule HCCF v,, vy, Ve, v, v are:

p1 = N1 —2vq, p2=Nz2—2v.,, p3=N3—2u,
p12 = N1+ No — (204 + 20 +ve), quo = le
p= N1+ N2+ N3 — (2v4 + 20c + 2vp + va + V),
q=Iqg+le.

The quantum numbers v,, vy, v. denote the three local
stretching modes; while Uﬁf’ and vle denote the two local
bending modes. In the paper, we consider the coupling
schemes (12)3, which emphasizes the coupling (12).
From the knowledge of the Lie algebra [14], the
Hamiltonian of a tetratomic molecule HCCF is then ex-
panded in terms of the Casimir operators of every sub-
group in group chain (2), i.e. for linear tetratomic molecule
HCCEF, the expansion in terms of Casimir operators is

H=Ey+ A1Cy + AsCo + A3C3 + A12C15 + A123Chas
+ Mo Mio + Aoz Moz + Az Mz, (4)

Where Ay, As, Az, A1a, A123, A2, A13, Aog are expansion
coefficients, and they can be determined by spectroscopic
data

Ci(i=1,2,3) = D} + J} (5)

is the Casimir operator of group O;(4) (i = 1,2, 3);
_ 2
Cij = Cij + QCij

= (Di+ D;)* + (Ji + J;)* + 2[(Di + Dy)(Ji + Jj)(] )
6
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Table 1. The fitting parameters of CoHF (all parameters are
1

in cm™ ", except N1, N2, N3 which are dimensionless).
N1 43
Ny 113
N3 137
Aq —0.18512540(+2)
As —0.22113612(+1)
As —0.40846059(+1)
Alz 0.13254586(+1)

Ajps  —0.99038659(+1)
A1z 0.13407230(+1)
Mis —0.60777340(—3)
Ao 0.18408663(—3)

is the Casimir operator of O;(4) ® 0;(4) (i,5 = 1,2,3);

Ciog = (D1 + Do+ D3)* + (Ji + J2 + J3)*  (7)
is the Casimir operator of O1(4) ©£02(4)®03(4) (D; is the
dipole operator, J; is the angular momentum operator).
Mo, My, Mas are the Majorana operator [14].
According to the second quantization theory, the op-
erators Ji(i) and Dg) can be expressed by creation and
annihilation operators. The explicit representations of the
dipole operators and angular momenta operators are

I =2l < m) (8)
DY =[x+ x &, + o x 7] 9)

Here, as usual, JZS)(DS)) represents the u-component of
rank-1 spherical tensor about bond ¢, the Mys, M3, Mas
are as follows

+ + + +7(1)
M13:[7r1><03—01><7r3} .

[
+o[rf x xf ] [mr x 7],

[

(

'[ﬁ-lXﬁ-Q} )
! . [ﬁ'g X 073 — 02 ><7~T3}(1)

W, (10)

. [ﬁ'g X ﬁg]
We can find the physical meaning of the Casimir in [15].
In order to get the vibrational states, we must calculate
eigenvalues of the Hamiltonian (4), or in other words, we
must calculate the eigenvalues of Casimir operators with
the basis (3). In HCCF the vibron numbers Ny, N3 and N3
are taken to be 43, 113 and 137. We fit 71 observed data,
which come from literature [16], using the least-square
procedure. Fitting coefficient values are listed in Table 1.
The fitting rms is 4.80 cm~!. Partial calculated vibra-
tional levels of HCCF are listed in Table 2, together with
the experimental data [16].
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Table 2. The calculated vibrational levels for HCCF (cm™'). A = Cal. — Ezp., § = 100*(Cal. — Exp.)/Exp.

V1, V2,3 vi“,vé{’ Exp. [20] this paper A 4 V1, V2,03 vf{‘, v? Exp. [20] this paper A 1)
000 v 20 732.08 738.62 6.54  0.894 001 31 0° 278830 2786.55 —1.75 —0.063
000 1 17 949.03 948.90 —0.13 —0.014 010 38 0% 395942  3966.77  7.35 0.186
ooo 17' 1t 952.67 958.28 5.61  0.589 200 1Y 0° 714929 715051  1.22  0.017
001 0° 0° 1061.44 1061.18 —0.26 —0.025 003 0° 1' 351864 3517.94 —0.70 —0.020
000 20 0° 115559 115772 213 0.185 003 1Y 0° 371870 372028  1.58  0.042
010 0% 0° 2239.20 2241.17  1.97 0.088 001 4% 11 3725.03 3725.60 0.57 0.015
100 0° 0° 3356.97 3351.27 —5.70 —0.170 002 31 0% 382854 381892 —9.62 —0.251
000 0° 4°  1466.83  1466.33 —0.50 —0.034 001 58 0°  3927.63 392576 —1.87 —0.048
001 0° 2° 1799.71  1800.84 1.13  0.063 012 0° 1'  4700.39 470351  3.12  0.066
001 11 17! 2011.03  2006.80 —4.50 —0.224 021 0° 1  5865.79  5864.10 —1.69 —0.029
001 17' 1! 201496 2015.88  0.92  0.046 004 0% 1% 4540.52  4537.89 —2.63 —0.058
000 3t 17! 210042 210027 —0.15 —0.007 004 11 0% 474133 474115 —0.18 —0.004
002 0% 0° 2108.13  2106.56 —1.57 —0.075 003 31 0%  4854.04  4852.66 —1.38 —0.029
000 37! 1! 210867 2113.54  4.87 0.231 000 00 22 735.58 736.76 1.18  0.160
001 20 0° 221161 221098 —0.63 —0.028 000 1t 951.20 950.43  —0.77 —0.081
000 4° 0° 230348  2309.57 6.09  0.264 001 0° 22 1803.43  1799.16 —4.27 —0.237
010 0% 2° 2037.77  2939.57 1.80 0.061 000 20 922 1893.64  1893.93  0.29 0.015
010 11 17! 3166.02 316644 042 0.013 001 11 1' 201352  2008.08 —5.44 —0.270
010 17! 1* 317092 317148 056 0.018 000 3t 1! 210448  2103.40 —1.08 —0.051
011 0% 0° 330053 3294.43 —6.10 —0.185 002 0° 22 2852.60 2852.83  0.23  0.008
010 20 0%  3384.76  3391.02 6.26  0.185 011 11 1 423151 423346 195 0.046
101 0° 0° 441442 441160 —2.82 —0.064 220 1t 1t 11937.71
020 0° 0° 4464.32  4458.63 —5.69 —0.127 310 0% 20 12638.29
002 0° 2° 2848.89  2854.30 541  0.190 410 0° 0° 14840.12
003 0° 0° 3142.62 315024  7.62  0.242 500 0% 0° 15463.03
001 49 0% 335173 335490 3.17  0.095 010 0° 5t 4024.80
011 11 17' 422892 423226 3.34  0.079 010 20 3! 4475.57
011 17' 1Y 423252  4241.14 862 0.204 200 0% 3! 7694.91
012 0° 0° 4345.26  4338.87 —6.39 —0.147 201 0° 1! 8009.51
011 20 0%  4438.18  4436.36 —1.82 —0.041 000 3t 6° 3875.07
102 0° 0° 5459.69  5463.12  3.43  0.063 004 0° 1! 4473.60
120 20 0°  5606.60 5600.62 —5.98 —0.107 010 51 22 5828.61
111 0° 0° 6650.09 6652.40 231  0.035 010 5% 272 5836.80
004 0° 0° 4165.86 4171.10 524  0.126 101 49 1t 7010.40
103 0° 0% 6491.99  6490.97 —1.02 —0.016 110 22 371 7827.22
101 4° 0%  6641.98  6638.04 —3.94 —0.059 030 20 1t 8151.27
020 4° 0% 673273 6736.64 391  0.058 200 3t 20 9030.62
012 4° 0%  6603.30 6603.96 0.66 0.010 120 1t 20 9062.45
000 0% 1! 366.64 367.02 0.38  0.103 202 0° 1! 9097.33
000 1o 583.70 583.16  —0.54 —0.092 201 20 1t 9146.02
000 11 2% 131560 1316.86  1.26  0.096 200 4% 171 9206.12
000 17! 2? 1322.24  1317.79 —4.45 —0.336 120 22 171 9304.81
001 0° 1%  1431.34 142888 —2.46 —0.172 121 1t 0 9406.87
000 20 1Y 152344  1525.68  2.24  0.147 210 0° 3t 9910.04
001 11 0° 164277 1640.13 —2.64 —0.161 210 20 1t 10307.37
000 3t 0%  1735.37 173747 210 0.121 130 1t 0 10550.64
010 11 0° 2816.16  2820.33  4.17  0.148 300 20 1t 11106.27
001 0% 3' 217048 216498 —5.50 —0.253 300 22 17! 11191.07
002 0% 1'  2479.66  2477.88 —1.78 —0.072 301 1t 0 11368.19
001 20 1Y 258150 2579.56 —1.94 —0.075 310 0% 1! 12259.74
002 11 0°  2687.33  2679.88 —7.45 —0.277 400 11 0o 13196.77
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N 2 2
H:EO+A1{[(7T;FX071+U;r><7}1)1(cl)] +|:\/§(7'r;r><ﬁ'l);l)] }

(1
k

2
)] + [\/i(w; X 7?2)](:
(1)
k

+A2{ |:(’7‘r;r X 09 +0’; X ﬁ'g)

+A12{[(7r

+
1

o et o

X 01 —‘rO’fXﬁ'l)

-‘y-Q([(WiF X 01 —‘rO’T Xﬁl),(cl)} . [(71’; XOTQ—‘rO'; ><7~1'2)

)]2} +A3{[(7r3+ X G3 + 05 X 73)

2

(1
k

T+ [Vates <70}
}2

X 7?1)](61)} . [\/i(w; X ﬁg),(:)])}

1)
k

+

2
+ {(F;XOTQ—I—O';_ Xﬁg)](cl)} + [\/5(71’2 Xﬁg)

(€]
k

™

]+[ﬁ(

+A123{ [(ﬂ x 71 + oF x 7?1)1(:)]2 + [\/i(wj x 7?1),(:)]2 T [(w; X &2+ oF x 77'2)](:)]2 + [\/i(w; x 77'2)](:)]2
+ [(w; X &3+ oF x ﬁg)fj)r + [ﬁ(n; x ﬁg)fj)r + 2([(7r1+ X &1 4 o7 x ﬁl)fj)] : [(w; X Go + 05 X ﬁg)fj)]
+ [V2(ri x m) ] [VR(r x 7)) 4 [(7f x G+ ol xm) U] [(7F ) G+ of x Fa) ]
+ [Va(ri x m) ] [Va(rd x 7))+ 2([(rF x G+ ob x w) ] [(7F x G+ of x 7o) V]
+ [\/5(7r;r X 7?2),(:)] . [\/5(71';_ X 7?3)](:)])}
+n{[rt x of —of x 7)Y [ x d2 — a1 x o] 2wl < wd ]V [ x 7))
+as{ [rF % oF —oF x 7] D [fa x s — G2 x 7o) 2w < wf ]V [Fa x ) V)
+daa{ [ x of —of xwf] Y (71 x 6o — 1 x w] 2w )] [fx 7] V) (11)

Putting equations (5-10) into equation (4), we shall get
the molecular algebraic Hamiltonian in spherical operators
version:

see equation (11) above.

3 Potential energy surface
3.1 The classical Hamiltonian

It is obvious that the Hamiltonian (11), expressed by cre-
ation and annihilation operators, does not have an explicit
kinetic and potential form. However, it is possible to re-
turn to the potential energy surface by a direct study of
the inverse problem. The geometric space of an algebraic
structure is called, in mathematical terms, cosset space.
This cosset space is intimately related to the starting al-
gebraic structure and leads to the classical limits of Boson
operators. In one such limit, this different realization of
the system’s quantum states is called a coherent state re-
alization [17].

In the U(4) case, the coherent states have the form [13]

N
VA v
' (12)

and the complex number £ represents the vector vi-
bron in phase space. The classical limit of the algebraic
Hamiltonian (11) is then defined as the expectation value
of H over the coherent state

He (&, €7) = ([N, §[H[[N], €) -

For calculating equation (13), we must calculate every
term in equation (11). For example, the expectation value

1

1.9 = o= [ (1+167) " o e )

(13)

of some terms in equation (11) are as follows,

(IN],€|o" x| [N], &) = NE* /1 — ¢ - ¢
<[N]7§|0-+0-| [N]7§> :Nf* €

(INL,&|(aFm)?|[N],&) = N(N = 1)(€")*(1 = € - €).
(14)
We can introduce a more familiar form of the Hamiltonian
by considering the canonical transformation

1
V2

Taking equations (14, 15) into equation (13), we obtain
the classical Hamiltonian H,;.

@:%(qmpi); € = —(qi—jp)) (7 =v-T). (15)

3.2 Potential energy surface

The canonical coordinates and momenta satisfy
Hamilton’s canonical equations
chl chl
Y = ——— ;= ——. 16
W =g Pi o, (16)

The potential energy surface is defined as

V(d1,492,93) = Ha(q1,92,93;p1 = 0,p2 = 0,p3 = 0).
(17)
We use the transformation between bond coordinates and
classical coordinates [2]
—Bi(ri—ric) (i=1,2,3)

¢ =e (18)
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2mwev;
a; =
3 3 (51 u2 1 1 2
\/ {2(A12 + A123) N1 N2 + 2(Aiz + A123)NiN3 — - A2 N1 N2 — —/\i3N¢N3} (—2 +— +tus (—2 + =+ >>
2 2 Tie  T3e je T3¢ TieT3e
(i=1,2). (25)
where r; is the ¢th bond coordinate, ;. is the equilibrium and
bond length, and §; is a spectral parameter. The value (2mev;)? = ko,0,Go,0, (24)

of 3; is calculated with the formula [18]:

2m2cu;a

ﬁi = Die Wie - (19)
Wie, U;a, Dje has the usual meaning as in reference [18].
«; is the parameter which is given in the next section; 6; is

the bond angle. Here we introduce the transformation:

1
aLras = COShO&l(Gl — 910),
1
ag - az — (20)

cosh 9 (92 — 920) '

The value of a; - ay is determined by the relation of q,
g2, q3, where a; is the unit vector along the vector q;,
0; is the bond angle, 6,y is the equilibrium bond angle.
Taking equations (18-20) into equation (17), we can get
the expression of the potential energy surface with the
molecular bond coordinates.

Derivation of the parameters «;

Within the Born-Oppenheimer approximation, the kinetic
operator for bond angle is

K2 G 0?
T=—— - 21
2 %: I aTiaTj ( )
and
u u 1 1 2
G916171+72+U3<T+T+ >
e T3¢ le T3¢ T1eT3e
Ug U2 1 1 2
G9292:T+T+“3<T+T+ ) (22)
"2e  T3e T2¢e T3¢  T21eT3e
We know
(2mcvy)? 0%V
N P R
016, 1 lri=rie,ra=roe,r3=r3¢,01=010,02=020

= {2(A12 + A123)N1Na + 2(A1s + A123) N1 N3

3 3
- §>\12N1N2 - §>\13N1N3}af

(2mcvg)? 02V
Go,0, 002

ko,0, =

T1=T1e,T2=T2¢,T3=T3¢,01=",02=7

= {2(A12 + A123) N1 No + 2(Ass + A123)NaN3

3 3
— 5)\12N1N2 — 5)\23N2N3}0&§ (23)

v; is the bending frequency, and c is the light velocity.
From equations (22-24), we obtain the expression for pa-
rameters ajand s

see equation (25) above.

4 Molecular properties
4.1 Force constants

We obtain the potential energy surface by using the semi-
classical limit of algebraic Hamiltonians. So by using equa-
tions (17-25) some properties of the potential surface can
be discussed. For simplicity, we only calculate the second
order force constants in the present paper

9%
or? PI=T1e,m2=Tac,T3=T30,01=010,02=020
= —2A,8iN} + A12( — 2BiN{ — Qﬁ%NlNQ)
+ 0.5M1232N1 Ny + 0.5A1367 N1 N3
+ Aya3( — 267 N7 — 28 N1 Ny — 287 N1 N3)

le ™1 -

9%
‘97"5 P1=T1c,ra=T2e,r3=T5e,01=010,02=020
—2A505 N3 + A1z (— 265N5 — 265 N1N,)
+0.5A1282N1 Ny + 0.5X9382 N, N3

+ Avag(— 265 N3 — 265 N1 Ny — 235 N2 N3)

kT‘Q’!‘Q -

0%v
b = G2
3 lri=rie,r2=r2e,r3=r3¢,01=010,02=020
= —2A365N3 + 0.5\1382 N1 N3 + 0.5\23/33 N2 N3
+ A123(— 285N — 285N N3 — 235 N2 N3)

v

00T |, . ramrae ramrae 01 =010,02=030

= (—2A12N1 Ny + A123(—2N1 Ny — 2N N3)
+ 1.5A1aN1 No + 1.5013N; N3 )a?

ko0, =

v

89% T1=T1le,"2="T2¢,"3="3c,01=010,02=020

= (=2A412N1 N3 + Aj23(—2N1 Ny — 2N1 N3)
+ 1.5A12N1 Ny + 1.5X93 No N3 )2,

ko,0, =

(26)
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V(g1,q2,q3) = (A1 + A1z + A123) {NT (2 — ¢1)qi } + (A2 + A1z + A123) { N5 (2 — 5)a5 } + (As + Ar2s) {N5 (2 — ¢3)d3 }

1 1 1 1
+ (2A12 + 2A123) {N1N2(2 —q)z(2— qg)“]ﬂh} + 2A123{N1N3(2 —a1)?(2—¢3)2q1gs + NaN3(2 — ¢3)

=

1
(2*q§)2q2q3}

1 1 1 1
+ A2 (ZN1N2 (2— qg) g + =N N; (2— fﬁ) @ — §N1N2 [(2- fﬁ) (2- qg)] 2 (11QQ)

4
1 oy 2 1 2y 2 1
+ A3 ZNlNB (2—a3)a + 1N1N3 (2—ai) g5 — §N1N3

4 4

1 1 1
+ A3 (—N3N2 (2—¢3) a5 + N3Nz (2 —q3) g5 — 3 NaN2 [(2- %) (2-¢)]

[(2-a) (2-2)]* qlqg)

=

QSQ2)

Table 3. The force constants (aJ; A; Rad) and the dissociation
energy (eV) of HCCF.

The values of this work  Reference [1]

k11 = 6.25795 k11 = 6.370
kaz = 6.4219 kss = 16.341
kss = 15.3966 ko0, = 0.251

kg, 0, = 0.251988
koy0, = 0.917484

D. =23.7915
De1 = 3.76336
Do = 2.56634
De3 = 11.8096

4.2 Dissociation energy

It is obvious that at ry — r1e, 72 — 9. and rg — 73 the
potential energy surface has the global minimum, and the
well depth at the minimum of the potential is

D, = *(A1N12 + A2N22 + A3N32 + A12(N1 -+ N2)2
+ A123(N1 4+ N2 + N3)?).
The other stationary points of V(rq,r2,73,01,02) are at
Tl — Tlcos T2 — T200, 3 = T3¢ O &t 11 — Tloo, T2 = T2e,
r3 — T300 and 7| = T1e, Iy — Tono, I'3 — T35 Which are
the three valleys where two bonds are fully extended and
another bond is at its equilibrium position. The depth of

the ith valley is De;:
Dey = —(A1N7 + A1p N7 + A1ps Ny

+ 0.5 12 N1 No + 0.5)\13N1N3)
Dey = —(A2N3 + A1aN3 + A193N3

+ 0.5A12N1 N2 + 0.5M\13N1 N3)
D.3 = —(A3N3 + A193NZ + 0.5\13N1 N3 + 0.5A03 NoN3).

(28)

The force constants and the dissociation energies are listed
in Table 3 with the result of the other method [1].

(27)

4.3 Saddle points

In the paper, we discuss the saddle points of the potential
energy surface. To reach this goal, we first need to obtain

the stationary points of equation (17). At the same time,
for mathematical simplicity, we consider the potential en-
ergy surface with equilibrium bond angles:

see equation (29) above.

The basic stationary points are

L {q1 =0, g2 =0, g3 = 0}. That is, {r1 — oo, r2 — o0,
rg — oo} when the transformation (18) are consid-
ered. This solution corresponds to the case in which the
three bonds are completely broken, i.e., the molecule
is dissociated;

2. {01 =0,92=0,q3 =1}, {1 =0, @2 = 1, g3 = 0} and
{e1 =1, g2 =0, g3 = 0}. That is, {r1 — oo, r2 — o0,
rs — r3.} when transformation (18) are considered;
{r1 — 00, rg = ra¢, 73 — 00} and {ry — rie, 12 — 00,
rg — oo} the three solutions correspond to the case
of two bond fully extended and the other bond at its
equilibrium position;

3. {¢1 = 1, ¢ = 1, g3 = 1}. This solution corresponds
to {r1 — rie, r2 — T2, 3 — T3¢ }. It means that the
potential-energy surface reaches the global minimum;

4 {pn=0,2=1,q3=1}, {¢1 =1, 2 =1, g3 =0} and
{;1 =1, ¢2 =0, g3 = 1}. That is, {r; — o0, r2 — 7o,
rg — T3} when transformation (18) are considered,
{r1 = rie, r2 = 12¢, 73 — 00} and {r1 — rie, r2 — 00,
r3 — T3 . The three solutions correspond to the case
of one bond extended and the other two bonds at their
equilibrium.

The four cases above are trivial solutions of the equations

for stationary points, and they have been discussed in de-

tail in Sections 4.1 and 4.2. But they are not saddle points.

For deriving the saddle points, first we should find the sta-

tionary points different from the above four cases, so we

should solve the next equations

OV _o OV _y 9V _
oq1 g2 Jqs3
Solving equations (30), we get some new points (g1, g2, 3);

in the next we will illustrate why the point is saddle point.
We define the matrix A as followings:

0. (30)

ail ai2 ais
a21 a22 G23
a31 as2 a33

A=

"

(aij = fq,q, (@10, 920, 930) 4,5 =1,2,3). (31)
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Fig. 2. The potential energy surface of stable CoHF with 7
and r3 (r2 — T2¢).

From the knowledge of [19], we know: when the matrix A is
positive definite, (q10, g20, ¢30) has a minimum at (g19 > 0,
g20 > 0, g0 > 0); when the matrix A is negative definite,
V(q1, g2, g3) has a maximum at (g10 > 0, g20 > 0, g30 > 0);
when A is indefinite, V(q1,¢2,¢3) has no peak point at
(910,20, 930). As usual, a stationary point (gi0,¢20,930)
at which V is neither maximum nor minimum may be a
saddle point. If we get all the peak points and compare
them, we can get the saddle points. With our own Fortran
program we know at (r; = 1.06445 A, ro = 1.19855 A,
r3 = 1.22924 A)

a1y als ail a12 ais
|a11| > 0, 21 Gy 0, asy1 a92 ag3 | < 0.
asi as2 ass

The Hessian A is indefinite. HCCF exits a saddle point.

5 Discussions

The potential energy surface is a four-dimensional figure if
we don’t consider the bond angles. For plotting the three
dimensional figures, we suppose that one bond is at its
equilibrium and the potential energy surface is changing
with the other two bonds. In Figure 2, we suppose that
the bond 2 is at its equilibrium and the potential energy
surface changes with bond 1 and bond 3. Also in Figure 3
we plot the contours corresponding to Figure 2. With the
analytical potential energy surface we got, we can discuss
some chemical problems. This work is in progress.

The Natural Science Foundation of Shandong Province of
China and the Natural Science Foundation of China and the
doctor Foundation of the education department of China sup-
ported this work.
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Fig. 3. The contours of stable CoHF with r1 and r3 (r2 = r2¢).
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