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Abstract. The potential energy surface of the tetratomic molecule HCCF is determined by the U(4) alge-
braic method. The combination coefficients in the Hamiltonian are gotten from fitting the spectroscopic
data. The molecular properties, such as, force constants and dissociation energies, are obtained in terms
of the potential energy surface. A saddle point is also derived.

PACS. 02.20.Sv Lie algebras of Lie groups – 34.20.Cf Interatomic potentials and forces

1 Introduction

Molecular potential energy surfaces provide a foundation
for understanding molecular phenomena. In recent years,
various methods for studying potential energy surfaces
of triatomic molecules have been developed [1–3]. Spec-
troscopy is the most accurate source of information on the
potential energy surface, and it is now possible to obtain
the reliable potential energy surface for small molecules
from the observed spectra.

Information about potential energy surfaces has im-
proved enormously in recent years, both from the analysis
of experimental data and from ab initio calculations, but it
is still a major task to gather this information into a func-
tional representation which can be used for calculation.

The success of the interacting boson model of Arima
and Iachello [4] has new interest in the study of many-body
systems governed by algebraic Hamiltonians. In particular
the properties of Hamiltonians with U(4) as the dynamical
symmetry group have been investigated by several groups.
It has been shown that algebraic technique are a powerful
tool for the description of both time independent and time
dependent phenomena [2,5–8].

Recently, the algebraic approach has been shown to
be capable of providing an accurate description of the
highly excited state spectra of triatomic molecules us-
ing a Hamiltonian containing a small number of param-
eters [2,9,10]. But the algebraic approach has no simple
geometric interpretation, that is, it does not easily permit
the resolution of the Hamiltonian into its kinetic and po-
tential energy contributions. From the semiclassical limit
of algebraic Hamiltonians, the explicit potential energy
surface can be obtained.

a e-mail: shlaudin@sdu.edu.cn

Levine and coworkers have treated the potential en-
ergy surface of triatomic molecules using a U(2) alge-
braic model [11,12]. But the U(2) algebraic model is a
one-dimensional model, and information about the bend-
ing motion can’t be obtained using it. Recently, Zheng
and Ding [2,3,13] have obtained the realistic potential en-
ergy surface of bent triatomic molecules and linear tri-
atomic molecules using U(4) model, and they got good re-
sults. We have obtained the spectroscopy of the tetratomic
molecules with the dynamical lie algebraic method [14].
In the present paper, we show how to obtain realistic po-
tential energy surfaces of the tetratomic molecule HCCF
using the U(4) algebraic model.

The organization of the work is as follows. In the
second section we review algebraic Hamiltonian of the
tetratomic molecule HCCF, and the expansion coefficients
are given by fitting the spectroscopic data. Also we give
the calculated vibrational energies and compare them with
the experimental data. The third section gives the semi-
classical Hamiltonian, while the potential energy surface is
derived. Some molecular properties, such as the dissocia-
tion energies, force constants and saddle points, are found
in section four. The final section give some discussions of
the potential energy surface.

2 The Hamiltonian in creation
and annihilation operators

In the tetratomic molecule HCCF, there are three in-
dependent vector coordinates, r1, r2 and r3 (we label
the bonds as in Fig. 1), which can be thought of as
three bonds. The general algebraic theory tells us that
a quantization of these coordinates (and associated mo-
menta) leads to the groups G1 = U1(4), G2 = U2(4)
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Fig. 1. The expression
of the HCCF molecule.

and G3 = U3(4), respectively. Then dynamical symmetric
group of HCCF is [15]:

G = U1(4) ⊗ U2(4) ⊗ U3(4). (1)

Its corresponding subgroup chain is [14]

U1(4) ⊗ U2(4) ⊗ U3(4) ⊃ O1(4) ⊗ O2(4) ⊗ O3(4)

⊃ O12(4) ⊗ O3(4) ⊃ O123(4) ⊃ O123(3) ⊃ O123(2).

(2)
The algebraic basis for this coupling scheme is character-
ized by the quantum numbers:

|[N1], [N2][N3]p1p2(p12, q12)p3(p, q)JM〉 . (3)

Here [Ni] denotes the totally symmetric representation of
Ui(4) (i = 1, 2, 3), (pi, 0) denotes the symmetrical rep-
resentation of Oi(4) (i = 1, 2, 3), and (p12, q12) denotes
the irreducible representation of O12(4). Here N1, N2, N3

are fixed and the remaining quantum numbers p1, p2, p3,
p12, q12, p, q, J , M are precisely used to characterize the
states of tetratomic molecule HCCF and its degeneracy.
The relations between the group quantum numbers and
the conventional quantum numbers of linear tetratomic
molecule HCCF va, vb, vc, vld

d , vle
e are:

p1 = N1 − 2va, p2 = N2 − 2vc, p3 = N3 − 2vb,

p12 = N1 + N2 − (2va + 2vc + ve), q12 = le

p = N1 + N2 + N3 − (2va + 2vc + 2vb + vd + ve),
q = ld + le.

The quantum numbers va, vb, vc denote the three local
stretching modes; while vld

d and vle
e denote the two local

bending modes. In the paper, we consider the coupling
schemes (12)3, which emphasizes the coupling (12).

From the knowledge of the Lie algebra [14], the
Hamiltonian of a tetratomic molecule HCCF is then ex-
panded in terms of the Casimir operators of every sub-
group in group chain (2), i.e. for linear tetratomic molecule
HCCF, the expansion in terms of Casimir operators is

Ĥ = E0 + A1Ĉ1 + A2Ĉ2 + A3Ĉ3 + A12Ĉ12 + A123Ĉ123

+ λ12M̂12 + λ23M̂23 + λ13M̂13. (4)

Where A1, A2, A3, A12, A123, λ12, λ13, λ23 are expansion
coefficients, and they can be determined by spectroscopic
data

Ci(i = 1, 2, 3) = D2
i + J2

i (5)

is the Casimir operator of group Oi(4) (i = 1, 2, 3);

Cij = C
(1)
ij + 2C

(2)
ij

= (Di + Dj)2 + (Ji + Jj)2 + 2[(Di + Dj)(Ji + Jj)]
(6)

Table 1. The fitting parameters of C2HF (all parameters are
in cm−1, except N1, N2, N3 which are dimensionless).

N1 43

N2 113

N3 137

A1 −0.18512540(+2)

A2 −0.22113612(+1)

A3 −0.40846059(+1)

A12 0.13254586(+1)

A123 −0.99038659(+1)

λ12 0.13407230(+1)

λ13 −0.60777340(−3)

λ23 0.18408663(−3)

is the Casimir operator of Oi(4) ⊕ Oj(4) (i, j = 1, 2, 3);

C123 = (D1 + D2 + D3)2 + (J1 + J2 + J3)2 (7)

is the Casimir operator of O1(4)⊕O2(4)⊕O3(4) (Di is the
dipole operator, Ji is the angular momentum operator).
M12, M13, M23 are the Majorana operator [14].

According to the second quantization theory, the op-
erators J

(1)
iu and D

(1)
iu can be expressed by creation and

annihilation operators. The explicit representations of the
dipole operators and angular momenta operators are

J
(1)
iu =

√
2
[
π+

i × π̃i

](1)
u

(8)

D
(1)
iu =

[
π+

i × σ̃i + σ+
i × π̃i

](1)
u

. (9)

Here, as usual, J
(1)
iu (D(1)

iu ) represents the u-component of
rank-1 spherical tensor about bond i, the M12, M13, M23

are as follows

M13 =
[
π+

1 × σ+
3 − σ+

1 × π+
3

](1) · [π̃1 × σ̃3 − σ̃1 × π̃3

](1)
+ 2

[
π+

1 × π+
3

](1) · [π̃1 × π̃3

](1)
,

M12 =
[
π+

1 × σ+
2 − σ+

1 × π+
2

](1) · [π̃1 × σ̃2 − σ̃1 × π̃2](1)

+ 2[π+
1 × π+

2 ](1) · [π̃1 × π̃2

](1)
,

M23 =
[
π+

2 × σ+
3 − σ+

2 × π+
3

](1) · [π̃2 × σ̃3 − σ̃2 × π̃3

](1)
+ 2

[
π+

2 × π+
3

](1) · [π̃2 × π̃3

](1)
. (10)

We can find the physical meaning of the Casimir in [15].
In order to get the vibrational states, we must calculate
eigenvalues of the Hamiltonian (4), or in other words, we
must calculate the eigenvalues of Casimir operators with
the basis (3). In HCCF the vibron numbers N1, N2 and N3

are taken to be 43, 113 and 137. We fit 71 observed data,
which come from literature [16], using the least-square
procedure. Fitting coefficient values are listed in Table 1.
The fitting rms is 4.80 cm−1. Partial calculated vibra-
tional levels of HCCF are listed in Table 2, together with
the experimental data [16].
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Table 2. The calculated vibrational levels for HCCF (cm−1). ∆ = Cal . − Exp., δ = 100∗(Cal . − Exp.)/Exp.

v1, v2, v3 vl4
4 , vl5

5 Exp. [20] this paper ∆ δ

0 0 0 00 20 732.08 738.62 6.54 0.894

0 0 0 11 1−1 949.03 948.90 −0.13 −0.014

0 0 0 1−1 11 952.67 958.28 5.61 0.589

0 0 1 00 00 1061.44 1061.18 −0.26 −0.025

0 0 0 20 00 1155.59 1157.72 2.13 0.185

0 1 0 00 00 2239.20 2241.17 1.97 0.088

1 0 0 00 00 3356.97 3351.27 −5.70 −0.170

0 0 0 00 40 1466.83 1466.33 −0.50 −0.034

0 0 1 00 20 1799.71 1800.84 1.13 0.063

0 0 1 11 1−1 2011.03 2006.80 −4.50 −0.224

0 0 1 1−1 11 2014.96 2015.88 0.92 0.046

0 0 0 31 1−1 2100.42 2100.27 −0.15 −0.007

0 0 2 00 00 2108.13 2106.56 −1.57 −0.075

0 0 0 3−1 11 2108.67 2113.54 4.87 0.231

0 0 1 20 00 2211.61 2210.98 −0.63 −0.028

0 0 0 40 00 2303.48 2309.57 6.09 0.264

0 1 0 00 20 2937.77 2939.57 1.80 0.061

0 1 0 11 1−1 3166.02 3166.44 0.42 0.013

0 1 0 1−1 11 3170.92 3171.48 0.56 0.018

0 1 1 00 00 3300.53 3294.43 −6.10 −0.185

0 1 0 20 00 3384.76 3391.02 6.26 0.185

1 0 1 00 00 4414.42 4411.60 −2.82 −0.064

0 2 0 00 00 4464.32 4458.63 −5.69 −0.127

0 0 2 00 20 2848.89 2854.30 5.41 0.190

0 0 3 00 00 3142.62 3150.24 7.62 0.242

0 0 1 40 00 3351.73 3354.90 3.17 0.095

0 1 1 11 1−1 4228.92 4232.26 3.34 0.079

0 1 1 1−1 11 4232.52 4241.14 8.62 0.204

0 1 2 00 00 4345.26 4338.87 −6.39 −0.147

0 1 1 20 00 4438.18 4436.36 −1.82 −0.041

1 0 2 00 00 5459.69 5463.12 3.43 0.063

1 2 0 20 00 5606.60 5600.62 −5.98 −0.107

1 1 1 00 00 6650.09 6652.40 2.31 0.035

0 0 4 00 00 4165.86 4171.10 5.24 0.126

1 0 3 00 00 6491.99 6490.97 −1.02 −0.016

1 0 1 40 00 6641.98 6638.04 −3.94 −0.059

0 2 0 40 00 6732.73 6736.64 3.91 0.058

0 1 2 40 00 6603.30 6603.96 0.66 0.010

0 0 0 00 11 366.64 367.02 0.38 0.103

0 0 0 11 00 583.70 583.16 −0.54 −0.092

0 0 0 11 20 1315.60 1316.86 1.26 0.096

0 0 0 1−1 22 1322.24 1317.79 −4.45 −0.336

0 0 1 00 11 1431.34 1428.88 −2.46 −0.172

0 0 0 20 11 1523.44 1525.68 2.24 0.147

0 0 1 11 00 1642.77 1640.13 −2.64 −0.161

0 0 0 31 00 1735.37 1737.47 2.10 0.121

0 1 0 11 00 2816.16 2820.33 4.17 0.148

0 0 1 00 31 2170.48 2164.98 −5.50 −0.253

0 0 2 00 11 2479.66 2477.88 −1.78 −0.072

0 0 1 20 11 2581.50 2579.56 −1.94 −0.075

0 0 2 11 00 2687.33 2679.88 −7.45 −0.277

v1, v2, v3 vl4
4 , vl5

5 Exp. [20] this paper ∆ δ

0 0 1 31 00 2788.30 2786.55 −1.75 −0.063

0 1 0 31 00 3959.42 3966.77 7.35 0.186

2 0 0 11 00 7149.29 7150.51 1.22 0.017

0 0 3 00 11 3518.64 3517.94 −0.70 −0.020

0 0 3 11 00 3718.70 3720.28 1.58 0.042

0 0 1 40 11 3725.03 3725.60 0.57 0.015

0 0 2 31 00 3828.54 3818.92 −9.62 −0.251

0 0 1 51 00 3927.63 3925.76 −1.87 −0.048

0 1 2 00 11 4700.39 4703.51 3.12 0.066

0 2 1 00 11 5865.79 5864.10 −1.69 −0.029

0 0 4 00 11 4540.52 4537.89 −2.63 −0.058

0 0 4 11 00 4741.33 4741.15 −0.18 −0.004

0 0 3 31 00 4854.04 4852.66 −1.38 −0.029

0 0 0 00 22 735.58 736.76 1.18 0.160

0 0 0 11 11 951.20 950.43 −0.77 −0.081

0 0 1 00 22 1803.43 1799.16 −4.27 −0.237

0 0 0 20 22 1893.64 1893.93 0.29 0.015

0 0 1 11 11 2013.52 2008.08 −5.44 −0.270

0 0 0 31 11 2104.48 2103.40 −1.08 −0.051

0 0 2 00 22 2852.60 2852.83 0.23 0.008

0 1 1 11 11 4231.51 4233.46 1.95 0.046

2 2 0 11 1−1 11937.71

3 1 0 00 20 12638.29

4 1 0 00 00 14840.12

5 0 0 00 00 15463.03

0 1 0 00 51 4024.80

0 1 0 20 31 4475.57

2 0 0 00 31 7694.91

2 0 1 00 11 8009.51

0 0 0 31 60 3875.07

0 0 4 00 11 4473.60

0 1 0 5−1 22 5828.61

0 1 0 53 2−2 5836.80

1 0 1 40 11 7010.40

1 1 0 22 3−1 7827.22

0 3 0 20 11 8151.27

2 0 0 31 20 9030.62

1 2 0 11 20 9062.45

2 0 2 00 11 9097.33

2 0 1 20 11 9146.02

2 0 0 42 1−1 9206.12

1 2 0 22 1−1 9304.81

1 2 1 11 00 9406.87

2 1 0 00 31 9910.04

2 1 0 20 11 10307.37

1 3 0 11 00 10550.64

3 0 0 20 11 11106.27

3 0 0 22 1−1 11191.07

3 0 1 11 00 11368.19

3 1 0 00 11 12259.74

4 0 0 11 00 13196.77
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Ĥ = E0 + A1

{[(
π+

1 × σ̃1 + σ+
1 × π̃1

)(1)

k

]2

+
[√

2
(
π+

1 × π̃1

)(1)

k

]2
}

+ A2

{[(
π+

2 × σ̃2 + σ+
2 × π̃2

)(1)

k

]2

+
[√

2
(
π+

2 × π̃2

)(1)

k

]2
}

+ A3

{[(
π+

3 × σ̃3 + σ+
3 × π̃3

)(1)

k

]2

+
[√

2
(
π+

3 × π̃3

)(1)

k

]2
}

+ A12

{[(
π+

1 × σ̃1 + σ+
1 × π̃1

)(1)

k

]2

+
[√

2
(
π+

1 × π̃1

)(1)

k

]2

+
[(

π+
2 × σ̃2 + σ+

2 × π̃2

)(1)

k

]2

+
[√

2
(
π+

2 × π̃2

)(1)

k

]2

+ 2
([(

π+
1 × σ̃1 + σ+

1 × π̃1

)(1)

k

]
·
[(

π+
2 × σ̃2 + σ+

2 × π̃2

)(1)

k

]
+

[√
2
(
π+

1 × π̃1

)(1)

k

]
·
[√

2
(
π+

2 × π̃2

)(1)

k

])}

+ A123

{[(
π+

1 × σ̃1 + σ+
1 × π̃1

)(1)

k

]2

+
[√

2
(
π+

1 × π̃1

)(1)

k

]2

+
[(

π+
2 × σ̃2 + σ+

2 × π̃2

)(1)

k

]2

+
[√

2
(
π+

2 × π̃2

)(1)

k

]2

+
[(

π+
3 × σ̃3 + σ+

3 × π̃3

)(1)

k

]2

+
[√

2
(
π+

3 × π̃3

)(1)

k

]2

+ 2
([(

π+
1 × σ̃1 + σ+

1 × π̃1

)(1)

k

]
·
[(

π+
2 × σ̃2 + σ+

2 × π̃2

)(1)

k

]
+

[√
2
(
π+

1 × π̃1

)(1)

k

]
·
[√

2
(
π+

2 × π̃2

)(1)

k

]
+

[(
π+

1 × σ̃1 + σ+
1 × π̃1

)(1)

k

]
·
[(

π+
2 × σ̃2 + σ+

2 × π̃2

)(1)

k

]
+

[√
2
(
π+

1 × π̃1

)(1)

k

]
·
[√

2
(
π+

2 × π̃2

)(1)

k

]
+ 2

([(
π+

1 × σ̃1 + σ+
1 × π̃1

)(1)

k

]
·
[(

π+
3 × σ̃3 + σ+

3 × π̃3

)(1)

k

]
+

[√
2
(
π+

2 × π̃2

)(1)

k

]
·
[√

2
(
π+

3 × π̃3

)(1)

k

])}

+ λ12

{[
π+

1 × σ+
2 − σ+

1 × π+
2

](1) · [π̃1 × σ̃2 − σ̃1 × π̃2

](1)
+ 2

[
π+

1 × π+
2

](1) · [π̃1 × π̃2

](1)}
+ λ23

{[
π+

2 × σ+
3 − σ+

2 × π+
3

](1) · [π̃2 × σ̃3 − σ̃2 × π̃3

](1)
+ 2

[
π+

2 × π+
3

](1) · [π̃2 × π̃3

](1)}
+ λ13

{[
π+

1 × σ+
3 − σ+

1 × π+
3

](1) · [π̃1 × σ̃3 − σ̃1 × π̃3

](1)
+ 2

[
π+

1 × π+
3

](1) · [π̃1 × π̃3

](1)}
(11)

Putting equations (5–10) into equation (4), we shall get
the molecular algebraic Hamiltonian in spherical operators
version:

see equation (11) above.

3 Potential energy surface

3.1 The classical Hamiltonian

It is obvious that the Hamiltonian (11), expressed by cre-
ation and annihilation operators, does not have an explicit
kinetic and potential form. However, it is possible to re-
turn to the potential energy surface by a direct study of
the inverse problem. The geometric space of an algebraic
structure is called, in mathematical terms, cosset space.
This cosset space is intimately related to the starting al-
gebraic structure and leads to the classical limits of Boson
operators. In one such limit, this different realization of
the system’s quantum states is called a coherent state re-
alization [17].

In the U(4) case, the coherent states have the form [13]

|[N ], ξ〉 =
1√
N !

[(
1 + |ξ|2

)−1/2 (
σ+ + ξ · π+

)]N

|0〉
(12)

and the complex number ξ represents the vector vi-
bron in phase space. The classical limit of the algebraic
Hamiltonian (11) is then defined as the expectation value
of H over the coherent state

Hcl(ξ, ξ∗) = 〈[N ], ξ|H |[N ], ξ〉 . (13)

For calculating equation (13), we must calculate every
term in equation (11). For example, the expectation value

of some terms in equation (11) are as follows,

〈[N ], ξ
∣∣σ+π

∣∣ [N ], ξ〉 = Nξ∗
√

1 − ξ∗ · ξ
〈[N ], ξ

∣∣σ+σ
∣∣ [N ], ξ〉 = Nξ∗ · ξ

〈[N ], ξ
∣∣(σ+π)2

∣∣ [N ], ξ〉 = N(N − 1)(ξ∗)2(1 − ξ∗ · ξ).
(14)

We can introduce a more familiar form of the Hamiltonian
by considering the canonical transformation

ξi =
1√
2
(qi+jpi); ξ∗i =

1√
2
(qi−jpi) (j =

√−1). (15)

Taking equations (14, 15) into equation (13), we obtain
the classical Hamiltonian Hcl.

3.2 Potential energy surface

The canonical coordinates and momenta satisfy
Hamilton’s canonical equations

q̇i =
∂Hcl

∂pi
, ṗi = −∂Hcl

∂qi
. (16)

The potential energy surface is defined as

V (q1,q2,q3) = Hcl(q1,q2,q3;p1 = 0,p2 = 0,p3 = 0).
(17)

We use the transformation between bond coordinates and
classical coordinates [2]

q2
i = e−βi(ri−rie) (i = 1, 2, 3) (18)
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αi =
2πcvi√

−
{

2(A12 + A123)N1N2 + 2(Ai3 + A123)NiN3 − 3

2
λ12N1N2 − 3

2
λi3NiN3

} (
u1

r2
ie

+
u2

r2
3e

+ u3

(
1

r2
ie

+
1

r2
3e

+
2

rier3e

))

(i = 1, 2). (25)

where ri is the ith bond coordinate, rie is the equilibrium
bond length, and βi is a spectral parameter. The value
of βi is calculated with the formula [18]:

βi =

√
2π2cuiA

Die
wie. (19)

wie, uiA, Die has the usual meaning as in reference [18].
αi is the parameter which is given in the next section; θi is
the bond angle. Here we introduce the transformation:

a1 · a3 =
1

coshα1(θ1 − θ10)
,

a2 · a3 =
1

coshα2(θ2 − θ20)
. (20)

The value of a1 · a2 is determined by the relation of q1,
q2, q3, where ai is the unit vector along the vector qi,
θi is the bond angle, θi0 is the equilibrium bond angle.
Taking equations (18–20) into equation (17), we can get
the expression of the potential energy surface with the
molecular bond coordinates.

Derivation of the parameters αi

Within the Born-Oppenheimer approximation, the kinetic
operator for bond angle is

T = −�
2

2

∑
ij

Gij
∂2

∂ri∂rj
(21)

and

Gθ1θ1 =
u1

r2
1e

+
u2

r2
3e

+ u3

(
1

r2
1e

+
1

r2
3e

+
2

r1er3e

)

Gθ2θ2 =
u4

r2
2e

+
u2

r2
3e

+ u3

(
1

r2
2e

+
1

r2
3e

+
2

r21er3e

)
. (22)

We know

kθ1θ1 =
(2πcv1)2

Gθ1θ1

=
∂2V

∂θ2
1

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=θ10,θ2=θ20

= −
{

2(A12 + A123)N1N2 + 2(A13 + A123)N1N3

− 3
2
λ12N1N2 − 3

2
λ13N1N3

}
α2

1

kθ2θ2 =
(2πcv2)2

Gθ2θ2

=
∂2V

∂θ2
2

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=π,θ2=π

= −
{

2(A12 + A123)N1N2 + 2(A23 + A123)N2N3

− 3
2
λ12N1N2 − 3

2
λ23N2N3

}
α2

2 (23)

and
(2πcvi)2 = kθiθiGθiθi (24)

vi is the bending frequency, and c is the light velocity.
From equations (22–24), we obtain the expression for pa-
rameters α1and α2

see equation (25) above.

4 Molecular properties

4.1 Force constants

We obtain the potential energy surface by using the semi-
classical limit of algebraic Hamiltonians. So by using equa-
tions (17–25) some properties of the potential surface can
be discussed. For simplicity, we only calculate the second
order force constants in the present paper

kr1r1 =
∂2v

∂r2
1

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=θ10,θ2=θ20

= −2A1β
2
1N2

1 + A12

( − 2β2
1N2

1 − 2β2
1N1N2

)
+ 0.5λ12β

2
1N1N2 + 0.5λ13β

2
1N1N3

+ A123

( − 2β2
1N2

1 − 2β2
1N1N2 − 2β2

1N1N3

)
kr2r2 =

∂2v

∂r2
2

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=θ10,θ2=θ20

= −2A2β
2
2N2

2 + A12

( − 2β2
2N2

2 − 2β2
2N1N2

)
+ 0.5λ12β

2
2N1N2 + 0.5λ23β

2
2N2N3

+ A123

( − 2β2
2N2

2 − 2β2
2N1N2 − 2β2

2N2N3

)
kr3r3 =

∂2v

∂r2
3

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=θ10,θ2=θ20

= −2A3β
2
3N2

3 + 0.5λ13β
2
3N1N3 + 0.5λ23β

2
3N2N3

+ A123

( − 2β2
3N2

3 − 2β2
3N1N3 − 2β2

3N2N3

)
kθ1θ1 =

∂2v

∂θ2
1

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=θ10,θ2=θ20

= (−2A12N1N2 + A123(−2N1N2 − 2N1N3)

+ 1.5λ12N1N2 + 1.5λ13N1N3)α2
1

kθ2θ2 =
∂2v

∂θ2
2

∣∣∣∣
r1=r1e,r2=r2e,r3=r3e,θ1=θ10,θ2=θ20

= (−2A12N1N2 + A123(−2N1N2 − 2N1N3)

+ 1.5λ12N1N2 + 1.5λ23N2N3)α2
2. (26)
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V (q1, q2, q3) = (A1 + A12 + A123)
{
N2

1 (2 − q2
1)q2

1

}
+ (A2 + A12 + A123)

{
N2

2 (2 − q2
2)q2

2

}
+ (A3 + A123)

{
N2

3 (2 − q2
3)q2

3

}
+ (2A12 + 2A123)

{
N1N2(2 − q2

1)
1
2 (2 − q2

2)
1
2 q1q2

}
+ 2A123

{
N1N3(2 − q2

1)
1
2 (2 − q2

3)
1
2 q1q3 + N2N3(2 − q2

2)
1
2 (2 − q2

3)
1
2 q2q3

}
+ λ12

(
1

4
N1N2

(
2 − q2

2

)
q2
1 +

1

4
N1N2

(
2 − q2

1

)
q2
2 − 1

2
N1N2

[(
2 − q2

1

) (
2 − q2

2

)] 1
2 q1q2

)

+ λ13

(
1

4
N1N3

(
2 − q2

3

)
q2
1 +

1

4
N1N3

(
2 − q2

1

)
q2
3 − 1

2
N1N3

[(
2 − q2

1

) (
2 − q2

3

)] 1
2 q1q3

)

+ λ23

(
1

4
N3N2

(
2 − q2

2

)
q2
3 +

1

4
N3N2

(
2 − q2

3

)
q2
2 − 1

2
N3N2

[(
2 − q2

3

) (
2 − q2

2

)] 1
2 q3q2

)
(29)

Table 3. The force constants (aJ; Å; Rad) and the dissociation
energy (eV) of HCCF.

The values of this work Reference [1]

k11 = 6.25795 k11 = 6.370

k22 = 6.4219 k33 = 16.341

k33 = 15.3966 kθ1θ1 = 0.251

kθ1θ1 = 0.251988

kθ2θ2 = 0.917484

De = 23.7915

De1 = 3.76336

De2 = 2.56634

De3 = 11.8096

4.2 Dissociation energy

It is obvious that at r1 → r1e, r2 → r2e and r3 → r3e the
potential energy surface has the global minimum, and the
well depth at the minimum of the potential is

De = −(A1N
2
1 + A2N

2
2 + A3N

2
3 + A12(N1 + N2)2

+ A123(N1 + N2 + N3)2). (27)

The other stationary points of V (r1, r2, r3, θ1, θ2) are at
r1 → r1∞, r2 → r2∞, r3 = r3e or at r1 → r1∞, r2 = r2e,
r3 → r3∞ and r1 = r1e, r2 → r2∞, r3 → r3∞ which are
the three valleys where two bonds are fully extended and
another bond is at its equilibrium position. The depth of
the ith valley is D̂ei:

De1 = −(A1N
2
1 + A12N

2
1 + A123N

2
1

+ 0.5λ12N1N2 + 0.5λ13N1N3)

De2 = −(A2N
2
2 + A12N

2
2 + A123N

2
2

+ 0.5λ12N1N2 + 0.5λ13N1N3)

De3 = −(A3N
2
3 + A123N

2
3 + 0.5λ13N1N3 + 0.5λ23N2N3).

(28)

The force constants and the dissociation energies are listed
in Table 3 with the result of the other method [1].

4.3 Saddle points

In the paper, we discuss the saddle points of the potential
energy surface. To reach this goal, we first need to obtain

the stationary points of equation (17). At the same time,
for mathematical simplicity, we consider the potential en-
ergy surface with equilibrium bond angles:

see equation (29) above.

The basic stationary points are
1. {q1 = 0, q2 = 0, q3 = 0}. That is, {r1 → ∞, r2 → ∞,

r3 → ∞} when the transformation (18) are consid-
ered. This solution corresponds to the case in which the
three bonds are completely broken, i.e., the molecule
is dissociated;

2. {q1 = 0, q2 = 0, q3 = 1}, {q1 = 0, q2 = 1, q3 = 0} and
{q1 = 1, q2 = 0, q3 = 0}. That is, {r1 → ∞, r2 → ∞,
r3 → r3e} when transformation (18) are considered;
{r1 → ∞, r2 → r2e, r3 → ∞} and {r1 → r1e, r2 → ∞,
r3 → ∞} the three solutions correspond to the case
of two bond fully extended and the other bond at its
equilibrium position;

3. {q1 = 1, q2 = 1, q3 = 1}. This solution corresponds
to {r1 → r1e, r2 → r2e, r3 → r3e}. It means that the
potential-energy surface reaches the global minimum;

4. {q1 = 0, q2 = 1, q3 = 1}, {q1 = 1, q2 = 1, q3 = 0} and
{q1 = 1, q2 = 0, q3 = 1}. That is, {r1 → ∞, r2 → r2e,
r3 → r3e} when transformation (18) are considered,
{r1 → r1e, r2 → r2e, r3 → ∞} and {r1 → r1e, r2 → ∞,
r3 → r3e}. The three solutions correspond to the case
of one bond extended and the other two bonds at their
equilibrium.

The four cases above are trivial solutions of the equations
for stationary points, and they have been discussed in de-
tail in Sections 4.1 and 4.2. But they are not saddle points.
For deriving the saddle points, first we should find the sta-
tionary points different from the above four cases, so we
should solve the next equations

∂V

∂q1
= 0;

∂V

∂q2
= 0;

∂V

∂q3
= 0. (30)

Solving equations (30), we get some new points (q1, q2, q3);
in the next we will illustrate why the point is saddle point.
We define the matrix A as followings:

A =

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣
(aij = f

′′
qiqj

(q10, q20, q30) i, j = 1, 2, 3). (31)
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Fig. 2. The potential energy surface of stable C2HF with r1

and r3 (r2 → r2e).

From the knowledge of [19], we know: when the matrix A is
positive definite, (q10, q20, q30) has a minimum at (q10 > 0,
q20 > 0, q30 > 0); when the matrix A is negative definite,
V (q1, q2, q3) has a maximum at (q10 > 0, q20 > 0, q30 > 0);
when A is indefinite, V (q1, q2, q3) has no peak point at
(q10, q20, q30). As usual, a stationary point (q10, q20, q30)
at which V is neither maximum nor minimum may be a
saddle point. If we get all the peak points and compare
them, we can get the saddle points. With our own Fortran
program we know at (r1 = 1.06445 Å, r2 = 1.19855 Å,
r3 = 1.22924 Å)

|a11| > 0,

∣∣∣∣a11 a12

a21 a22

∣∣∣∣ > 0,

∣∣∣∣∣∣
a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣ < 0.

The Hessian A is indefinite. HCCF exits a saddle point.

5 Discussions

The potential energy surface is a four-dimensional figure if
we don’t consider the bond angles. For plotting the three
dimensional figures, we suppose that one bond is at its
equilibrium and the potential energy surface is changing
with the other two bonds. In Figure 2, we suppose that
the bond 2 is at its equilibrium and the potential energy
surface changes with bond 1 and bond 3. Also in Figure 3
we plot the contours corresponding to Figure 2. With the
analytical potential energy surface we got, we can discuss
some chemical problems. This work is in progress.

The Natural Science Foundation of Shandong Province of
China and the Natural Science Foundation of China and the
doctor Foundation of the education department of China sup-
ported this work.

Fig. 3. The contours of stable C2HF with r1 and r3 (r2 = r2e).

References

1. J.N. Murrell et al., Molecular Potential Energy Functions
(Mid-country Press, London)

2. S. Ding, Y. Zheng, J. Chem. Phys. 111, 4466 (1999)
3. Y. Zheng, S. Ding, Chem. Phys. 247, 225 (1999); Chem.

Phys. 255, 217 (2000)
4. A. Arima, F. Iachello, Ann. Phys. (N.Y.) 99, 253 (1976)
5. D.H. Feng, R. Gilmore, Phys. Lett. B 90, 327 (1980)
6. H.J.L ipkin, N. Meshkov, A.J. Glick, Nucl. Phys. 62, 188

(1965)
7. D. Guan et al., Chem. Phys. 224, 243 (1997); 233, 35

(1998)
8. D. Guan et al., Int. J. Quant. Chem. 65, 159 (1997); Int. J.

Quant. Chem. 63, 981 (1997); Chem. Phys. 218, 1 (1997)
9. F. Iachello, R.D. Levine, J. Chem. Phys. 77, 3046 (1982)

10. O.S. van Roosmalen, F. Iachello, R.D. Levine, A.E.L.
Dieperink, J. Chem. Phys. 79, 2515 (1983)

11. I. Benjamin, R.D. Levine, Chem. Phys. Lett. 117, 314
(1985)

12. I.L. Cooper, R.D. Levine, J. Mol. Struct. (Theochem) 199,
201 (1989)

13. Y. Zheng, S. Ding, J. Math. Chem. 28, 193 (2000)
14. M. Wang, S. Ding, Phys. Rev. A. 66, 022506 (2002)
15. F. Iachello, R.D. Levine, Algebraic Theory of Molecules

(Oxford University Press, Oxford, 1995)
16. F. Iachello, S. Oss, L. Viola, Mol. Phys. 78, 545 (1993)
17. O.S. van Roosmalen, A.E.L. Dieperink, Ann. Phys. (NY)

139, 198 (1982)
18. E.B. Wilson, J.C. Decius Jr, P.C. Cross, Molecular

Vibrations (McGraw-Hill, New York, 1955)
19. M.H. Protter, C.B. Morrey Jr, Modern Mathematical

Analysis (Addison-Wesley, London, 1964)


